EVALUATION OF MICRO-ALGAE GROWTH Messastrum gracile IN COMMERCIAL AND ALTERNATIVE CULTURE MEDIA USING SUGAR CANE MOLASS IN LESS LIGHT LENGTH

Authors

  • Débora Cristina Fenerick Tecnóloga em Agronegócio, mestranda no Centro de Aquicultura da Unesp (CAUNESP), Jaboticabal-SP-Brasil.
  • Lúcia Helena Sipaúba-Tavares Profa. Dra. no Centro de Aquicultura da Unesp (CAUNESP) Jaboticabal-SP-Brasil. https://orcid.org/0000-0002-2241-0241

DOI:

https://doi.org/10.52138/sitec.v11i1.126

Keywords:

Algal cultivation, Organic carbon, Light intensity, Aquatic plants, Biological waste

Abstract

The cultivation of microalgae promotes several studies to propose better management in production and cost reduction, since the implantation of these systems is high due to the need for light and culture media of high commercial value. Optimize and reduce costs through alternative means based on aquatic plants (Eichhornia crassipes), organic carbon source (sugar cane molasses) and reduced energy use are essential tools for implementing a successful algal culture. Thus, the objective of this work was to evaluate the development of Messastrum gracile microalgae in commercial medium CHU12 in mixotrophic cultivation using sugarcane molasses as a carbon source and an alternative macrophyte medium (E. crassipes), in luminous intensity of 30umol m-2 s-1. The highest growth values were observed in the macrophyte medium with maximum cell density of 197 x105 cells mL-1 and in the commercial medium, with 95x105 cells mL-1. The specific growth rate was k = 0.41 (macrophyte) and k = 0.27 (CHU12), with faster doubling time in the alternative medium with 2.45 days, whereas in the commercial medium it was 3.70 days. The levels of chlorophyll-a were 1.15 mgL-1 for E. crassipes and for CHU12 0.66 mgL-¹ was determined. The use of biological waste and a by-product of the agribusiness to produce these microorganisms is short importance to reduce the negative impacts on ecosystems.

References

ANDRULEVICIUTE, V.; MAKAREVICIENE, V.; SKORUPSKAITE, V; GUMBYTE, M. 2014. Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochlopsis sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol. Journal Applied Phycology, v. 26, n. 1, p. 83-90.

CHEN, M.L.I. A cyanobacterium that contains chlorophyll f-a red-absorbing photopigment. FEBS Lett v. 586, p. 3249-3254, 2015.

CHEN, W.-H., CHU, Y.-S., LIU, J.-L., CHANG, J.-S.: Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation. - Energy Conversion and Management, vol. 160, p. 209-219, 2018.

GUARAV, K., SRIVASTAVA, R., SHARMA, J.G., SINGH, R., SINGH, V.: Molasses-based growth and lipid production by Chlorella pyrenoidosa: A potential feedstock for biodiesel. - International Journal of Green Energy, vol. 13(3), p. 320-327, 2016.

GUILLARD, R.R.L. Division rates. In: STEIN, J. R. (Ed.). Handbook of phycological methods: culture methods and growth measurements, London: Cambridge University Press, p. 289-311. 1973.

KHANRA, S.; MONDAL, M.; HALDER, G.; TIWARIC, O.N.; GAYENA, K.; BHOWMICKD, T.K.: Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review – ELSEVIER Food and Bioproducts Processing, vol. 110, p. 60-84, 2018.

NUSCH, E.A. Of different methods for chlorophyll and phaeopigments determination. Archiv für Hydrobiologie, v. 14, n. 1, p. 14-36, 1980.

PÉREZ-GARCIA, O.; ESCALANTE, F.M.E.; DE-BASHAN, L.E.; BASHAN Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, v.45, n. 1, p.11-36.

SATHASIVAM, R., RADHAKRISHNAN, R., HASHEM, A. e ABD-ALLAH, EF.: Microalgae metabolites: A rich source for food and medicine. - Saudi Journal of Biological Sciences, vol. 26, n. 4, p. 709-722, 2019.

SIPAÚBA-TAVARES, L.H., IBARRA, L.C. and FIORESI, T.B.: Ankistrodesmus gracilis (Reinsch) Korshikov (Chlorophyta) laboratory cultured in CHU12 and macrophyte with NPK media. Boletim do Instituto de Pesca, vol. 35, n. 1, p. 111-118, 2009.

SIPAÚBA-TAVARES, L.H., SEGALI, A.M.D.L., BERCHIELLI-MORAIS, F.A., SCARDOELI-TRUZZI1, B.: Development of low-cost culture media for Ankistrodesmus gracilis based on inorganic fertilizer and macrophyte. Acta Limnologica Brasiliensia, vol. 29, e5, 2017.

SIPAÚBA-TAVARES, L.H.; FLORÊNCIO, T.; SCARDOELI-TRUZZI, B.: Aquaculture biological waste as culture medium to cultivation of Ankistrodesmus gracilis (Reinsch) Korshikov. Brazilian Journal of Biology, vol.78, n. 3, p. 579 - 587, 2018.

SIPAÚBA-TAVARES, L.H.; LUSSER-SEGALI, A.M.D.; SCARDOELLI-TRUZZI B.: Aquatic Plants: Alternative Medium for Microalgae Growth. - Ann Aquac Res vol. 2(1): p. 1009, 2015.

SIPAÚBA-TAVARES, L.H.; ROCHA, O.: Produção de plâncton (fitoplâncton e zooplâncton) para alimentação de organismos aquáticos. Rima, p.106, 2001.

Published

2020-12-20

How to Cite

Fenerick, D. C., & Lúcia Helena Sipaúba-Tavares. (2020). EVALUATION OF MICRO-ALGAE GROWTH Messastrum gracile IN COMMERCIAL AND ALTERNATIVE CULTURE MEDIA USING SUGAR CANE MOLASS IN LESS LIGHT LENGTH. Simpósio De Tecnologia Fatec Jaboticabal, 1(1), 60–65. https://doi.org/10.52138/sitec.v11i1.126